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Abstract

This paper proposes a novel strategy for estimating the heterogeneous treatment1

effect called the Fused and Accurate Shrinkage Tree (FAST). Our approach uti-2

lizes both trial and observational data to improve the accuracy and robustness of3

the estimator. Inspired by the concept of shrinkage estimation in statistics, we4

develop an optimal weighting scheme and a corresponding data-driven estimator5

that balances the unbiased estimator based on trial data with the potentially biased6

estimator based on observational data. Specifically, combining with tree-based7

techniques we introduce a new split criterion that utilizes both trial data and ob-8

servational data to more efficiently estimate treatment effect. Furthermore, we9

confirm the consistency of our proposed tree-based estimator and demonstrate the10

effectiveness of our criterion in reducing prediction error through theoretical anal-11

ysis. The advantageous finite sample performance of the FAST and its ensemble12

version over existing methods is demonstrated via simulations and real data anal-13

ysis.14

1 Introduction15

Causal effects are the magnitude of the response of an effect variable (also called outcome) caused16

by the effect variable (also called treatment), which is a fundamental and essential issue in the field17

of casual inference (Imbens and Rubin, 2016). And the heterogeneous treatment effect (abbr. HTE)18

is usually used to characterize the heterogeneity of causal effects across different subgroups of the19

population. In recent years, heterogeneous treatment effect estimation has been successfully applied20

in various fields such as epidemiology, medicine, and social sciences (Glass et al., 2013; Kosorok21

and Laber, 2019; Turney and Wildeman, 2015; Taddy et al., 2016).22

In general, the causal problems can be studied through both experimental studies (also known as ran-23

domized control trials, RCTs) and observational studies. Experimental studies are widely regarded24

as the gold standard for assessing causal effects since the randomization process eliminates the pos-25

sibility of confounding bias. However, large-scale RCTs can be challenged due to issues related to26

cost, time, and ethics (Edwards et al., 1999). On the other hand, observational data are often readily27

available with an adequate sample size. Under certain fairly strong assumptions, such as uncon-28

foundedness assumption, there is a rich literature regarding the estimation of HTE in observational29

studies, such as tree-based methods (Athey and Imbens, 2016; Wager and Athey, 2018; Athey et al.,30

2019), boosting (Powers et al., 2017; Nie and Wager, 2020) and meta learners (Künzel et al., 2019;31

Nie and Wager, 2020). However, the unconfoundedness assumption, which requires measuring all32

confounders, is untestable and may lead to invalid causal inferences if violated. Various methods33

have been proposed to mitigate the unmeasured confounding in observational studies, such as the34

sensitivity analysis (Rosenbaum and Rubin, 1983; Zhang and Tchetgen Tchetgen, 2022), the instru-35

mental variables (IV) approach (Angrist et al., 1996) and the proximal causal inference (Kuroki and36
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Pearl, 2014; Miao et al., 2018; Shi et al., 2020; Cui et al., 2023). However, the validity of these37

procedures also relies crucially on assumptions that are often difficult to verify in practice.38

Given the limitations of relying on individual data sources, data fusion, as a branch of causal in-39

ference strategies that integrates both the trial and the observational data, has gained significant40

interest in the literature (Bareinboim and Pearl, 2016; Colnet et al., 2020; Shi et al., 2022). Existing41

data fusion methods for estimating the HTE include the KPS estimator obtained by modeling the42

confounding function parametrically (Kallus et al., 2018), the semi-parametric integrative estimator43

under the parametric structural models (Yang et al., 2020) and the integrative R-learner (Wu and44

Yang, 2022). Besides, (Tang et al., 2022) proposed the Gradient Boosting Causal Tree (GBCT),45

which integrated the current observational data and their historical controls for estimating the condi-46

tional average treatment effect on the treated group (CATT).47

This paper presents a novel approach for estimating heterogeneous treatment effects (HTE) in the48

context of causal data fusion. The proposed method, named Fused and Accurate Shrinkage Tree49

(FAST), avoids the need for a two-stage estimation process required in conventional data fusion50

strategies, which involves modeling and estimating the nuisance confounding bias function. The51

main contributions of this work can be summarized as follows (i) The authors propose a novel52

shrinkage method for combining an unbiased and biased estimator, which effectively reduces the53

mean square error of the unbiased estimator, and provides an easy implementation of the method54

tailored for the HTE estimation; (ii) They extend the conventional node split criterion via a re-scaling55

technique, which automatically penalizes the use of the observational data with low quality (namely56

large confounding bias); (iii) They also provide a theoretical analysis to explain the advantages of57

our splitting criterion.58

2 Background and motivation59

2.1 Notations60

Let X ∈ X = [−1, 1]p be a p-dimensional vector of pre-treatment covariates, U ∈ Rq be a possibly61

unmeasured confounding variable, D be a binary treatment variable (D = 0 denotes the control and62

D = 1 denotes the treated) and let Y (d) be the potential outcome that would be observed when the63

treatment had been set to d ∈ {0, 1}. We follow the potential outcome framework (Rubin, 1974) to64

define the heterogeneous treatment effect τ(x), e.g., E(Y (1)− Y (0)|X = x).65

Suppose that we can collect two kinds of data: trial data and observational data, and they are de-66

scribed by n+m quadruples, {Yi, Di,Xi, Si}n+m
i=1 , where Si indicates if the i-th individual would67

have been recruited (S = 1) or not (S = 0) in the trial. We also denote R = {1, 2, · · · , n} the set68

of indices of observations in the RCT study, and O = {n+ 1, n+ 2, · · · , n+m} the set of indices69

of observations in the observational study. We define e(X,U , S) = P (D = 1|X,U , S) as the70

propensity score of the trial and observational population, respectively. In practice, Due to U being71

unknown, we usually use ê(X, S) to estimate e(X,U , S). In addition, ê(X, 1) is unbiased for the72

randomization of trial data, but ê(X, 0) is biased because the unmeasured confounder U is related73

to the assignment of treatment D. Let τ1(x) = E(Y (1)− Y (0)|X = x, S = 1) be the HTE on the74

trial population. We then make the following fundamental assumption on the trial and observational75

studies, which facilitates the potential for causal data fusion:76

Assumption 1. (i) For any x ∈ X , τ1(x) = τ(x); (ii) Y (d) ⊥ D|(X, S = 1) for d ∈ {0, 1} and77

(iii) the propensity score 0 < e(X, S) < 1 almost surely.78

Assumption 1 (i) states that the HTE function is transportable from the trial population to the tar-79

get population. Stronger versions of Assumption 1 include the ignorability of study participation80

(Buchanan et al., 2018) and the mean exchangeability (Dahabreh et al., 2019). In the following of81

this paper, we use |Λ| to denote the number of elements for any set Λ, ⌊c⌋ to denote the biggest82

integer less than or equal to the constant c, and [p] to denote the index set {1, 2, · · · , ⌊p⌋}. For two83

positive sequences {an}n≥1 and {bn}n≥1, we write an = O(bn) if |an/bn| is bounded.84

2.2 Tree-based methods85

To estimate the HTE, it is reasonable to perform subgroup analysis by appropriately stratifying or86

matching (Frangakis and Rubin, 2002) the samples into multiple subgroups that differ in the magni-87
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tude of treatment effects. In machine learning, tree-based methods (Breiman et al., 1984; Breiman,88

2001; Friedman, 2001) are usually used for such stratification tasks, which greedily optimize the89

loss function, also called splitting criterion, via recursively partitioning feature space. In fact, many90

tree-based causal methods designed for the HTE estimation were also proposed (Athey and Imbens,91

2016; Athey et al., 2019; Radcliffe and Surry, 2012). For convenience, we define a regression tree92

by two components: a set of leaves Q = {Qj}Jj=1 and the associated parameter τ . We can denote93

a causal tree by T (X;Q, τ) =
∑J

j=1 τ(Qj)I{x ∈ Qj}, where I{·} denotes the indicator function94

and τ(Qj) denotes the casual effect of sub-area indicated by Qj .95
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Figure 1: An illustration of the benefit of the shrinkage estimation strategy.

2.3 Shrinkage estimation96

It is important to note that applying conventional methods, such as the generalized random forest97

(Athey et al., 2019), separately to trial data and observational data can lead to two estimators: the first98

is unbiased but may have high variance, while the second is potentially biased but has a smaller vari-99

ance due to the larger amount of observational data. Therefore, the challenge becomes finding the100

optimal combination of an unbiased estimator and a biased estimator in the data fusion problem. To101

see this, suppose we have a parameter of interest θ ∈ R, an unbiased estimator θ̂u, and a (potentially)102

biased estimator θ̂b of θ, such that E(θ̂u) = θ, E(θ̂b) = θ + b(θ), Var(θ̂u) = σ2
u, Var(θ̂b) = σ2

b and103

Cov(θ̂u, θ̂b) = 0. Consider the family of estimators Λw = {θ̂w|θ̂w = wθ̂b+(1−w)θ̂u, 0 ≤ w ≤ 1},104

then the mean square error (MSE) of its elements admits the following expansion:105

E(θ̂w − θ)2 = (σ2
b + b2(θ) + σ2

u)w
2 − 2σ2

uw + σ2
u. (1)

Minimizing (1) with respect to w, we can obtain the unique minimizer w∗ = σ2
u/(σ

2
b + b2(θ) + σ2

u)106

and the gain of the optimal weighting can be characterized by the following formula107

E(θ̂∗w − θ)2 = (1− w∗)σ2
u = w∗(σ2

b + b2(θ)). (2)

Comment The weighting strategy is akin to the classical James-Stein shrinkage estimation (Efron108

and Morris, 1973; Green and Strawderman, 1991) method, in which it is shown that a multivariate109

normal vector Z (p ≥ 3), as a maximum likelihood estimator (MLE) of its population mean µ =110

E(Z), is not minimax, and the MSE of the estimator Z can be reduced by shrinking it towards the111

zero vector 0 by some factor 0 < w < 1. The zero vector can be viewed as a biased estimator of112

µ with zero variance in their setting. In comparison, we replace the deterministic estimator with a113

(potentially) biased estimator θ̂b: The larger the variance σ2
u of the unbiased estimator is compared to114

b2(θ)+σ2
b , the more the fused estimator θ̂w∗ will be shrunk towards the biased estimator that is less115

fluctuating. By doing so, one can efficiently mitigate the occurrence of significant estimation error116

in the unbiased estimator caused by its high variance, as unbiasedness alone does not guarantee117

reliable estimation performance in a finite sample. Figure 1 illustrates a concrete example of the118
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benefit provided by the shrinkage estimation, where θ = 0, θ̂u ∼ N(θ, 5) and θ̂b ∼ N(θ + 2, 0.5).119

The fused estimator θ̂w∗ reduces over 50% of the MSE compared with the unbiased estimator θ̂u.120

3 Methodology121

In this section, we propose a new data fusion strategy, referred to as the Fused and Accurate Shrink-122

age Tree (FAST). We proceed in a bottom-up manner to provide a clear and intuitive illustration of123

the entire estimation: we will begin by applying the shrinkage estimation strategy for local data fu-124

sion within each sub-region of the feature space given by a pre-specified partition. Then, we propose125

a fused criterion that incorporates the information contained in the observational data via a simple126

re-scaling of the conventional criterion. Theoretical guarantees are established in Section 4.127

3.1 Local fusion for the HTE estimation128

Under a pre-specified partition Q = {Qj}Jj=1 of the feature space, let Rj = {i|i ∈ R,Xi ∈ Qj}129

and Oj = {i|i ∈ O,Xi ∈ Qj} represent the sets of indices of the trial and observational sub-130

samples, respectively, that fall within the region Qj . Let131

Ỹ =
Y D

e(X, S)
− Y (1−D)

1− e(X, S)
(3)

be transformed outcomes of all data, e.g., the transformed outcomes of i-th sample can be denoted132

by Ỹi. Then under Assumption 1, one is able to verify that133

E(Ỹ |X = x, S = 1) = τ1(x) = τ(x). (4)

Thus, τ̂u(Qj) = (1/|Rj |)
∑

i∈Rj
Ỹi is an unbiased estimator of E(Y (1) − Y (0)|X ∈ Qj , S = 1),134

which can be seen as a reasonable approximation of τ(Qj) if Q segments the feature space properly135

such that τ(x) varies slowly in each sub-region Qj . An estimator of Var(τ̂u(Qj)) is given by136

σ̂2
u(Qj) = (1/|(Rj |(|Rj | − 1)))

∑
i∈Rj

(Ỹi − τ̂u(Qj))
2. In contrast, τ̂b(Qj) = (1/|Oj |)

∑
i∈Oj

Ỹi137

is a biased estimator concerning τ(Qj), due to the presence of unmeasured confounding (U ) on the138

observational data.139

It remains to estimate the region-specific weight w∗(Qj), amounting to the estimation of the tuple140

(σ2
u(Qj), σ

2
b (Qj), b

2(Qj)). The first term σ2
u(Qj) can be estimated by σ̂2

u(Qj). To bypass the141

unmeasured confounding issue of the observational population, re-sampling techniques, such as the142

Bootstrap (Efron, 1979; Hall, 1992), can be applied to estimate σ2
b (Qj). Alternatively, σ2

b (Qj) =143

O(|Oj |−1) is expected to be of a smaller order term compared to σ2
u(Qj) = O(|Rj |−1) in practice,144

which is a consequence of the relative sample size between the trial and the observational data. Thus,145

one can avoid estimating the negligible term σ2
b (Qj). For the last term, b̂(Qj) = τ̂b(Qj) − τ̂u(Qj)146

serves as a natural estimator of the bias b(Qj). This leads to the following estimator of w∗(Qj) and147

the corresponding fused estimator148

ŵof (Qj) = σ̂2
u(Qj)/(σ̂

2
u(Qj) + (b̂(Qj))

2) and (5)
149

τ̂of (Qj) = ŵof (Qj)τ̂b(Qj) + (1− ŵof (Qj))τ̂u(Qj). (6)
A fused estimator of the HTE function τ(·) under the partition Q can thus be defined as τ̂Q(x) =150 ∑J

j=1 τ̂of (Qj)I{x ∈ Qj}.151

3.2 Adaptive fusion for segmentation152

In order to obtain a tree-based partition Q designed for the fusion strategy (6), a split criterion153

is required, which is sufficient to be defined only at the root node given the recursive nature of154

the partitioning. We follow the honest estimation approach (Athey and Imbens, 2016) to prevent155

overfitting. Specifically, given a fraction 0 < r < 1 (typically r = 0.5), ⌊rn⌋ observations are156

sampled without replacement from the trial data of sample size n for the tree structure estimation,157

while the rest of observations are used for local estimation of the HTE in each leaf node. Let the158

index sets of the trial data used for the partition and the HTE estimation be Rt and Re, respectively.159
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We do not further split the observational data to reduce uncertainty, since we have already partitioned160

the trial data to avoid overfitting.161

The conventional criterion for growing a regression tree chooses the index of the split variable and162

its split value at the root node by minimizing the following goodness-of-fit criterion163

(q̂, ĉ) = arg min
q̂∈[p],ĉ∈R

 ∑
i∈R̂t

L

(
Ỹi − τ̂u(Q̂L,Rt)

)2

+
∑
i∈R̂t

R

(
Ỹi − τ̂u(Q̂R,Rt)

)2

 , (7)

where Q̂L = {x|xq̂ ≤ ĉ}, R̂t
L = {i|i ∈ Rt,Xi ∈ Q̂L} and τ̂u(Q̂L,Rt) = (1/|{i|i ∈ Rt,Xi ∈164

Q̂L}|)
∑

i∈{i|i∈Rt,Xi∈Q̂L} Ỹi , and Q̂R , R̂t
R and τ̂u(Q̂R,Rt) can be defined correspondingly.165

Given a tree grown under (7), we fuse the trial data indexed by Re and the observational data166

indexed by O at each leaf node according to (6) and refer to the resulting tree estimator as a Shrink-167

age Tree (ST). A direct modification of (7), which aligns more with the fused estimator at the leaf168

nodes, should be169

(q̂, ĉ) = arg min
q̂∈[p],ĉ∈R

 ∑
i∈R̂t

L

(
Ỹi − τ̂of (Q̂L)

)2

+
∑
i∈R̂t

R

(
Ỹi − τ̂of (Q̂R)

)2

 , (8)

where τ̂of (Q̂L) = ŵof (Q̂L)τ̂b(Q̂L) + (1 − ŵof (Q̂L))τ̂u(Q̂L,Rt) and τ̂of (Q̂R) is defined corre-170

spondingly. The replacement of the unbiased estimators in (7) with the fused estimators in (8)171

facilitates a goodness-of-fit criterion of the proposed fusion strategy.172

Alternatively, (7) can be interpreted as minimizing the sum of the estimated MSEs of the unbiased173

estimators at the child nodes, if the two terms on the right-hand side of (7) are divided by the square174

of their respective sample sizes. By contrast, since the fused estimator τ̂of reduces variance by175

shrinking the original unbiased estimator to a potentially biased estimator, simply comparing the176

fused estimators with the outcomes of the trial data as in (8) fails to capture the variability at the177

child nodes. Instead, an appropriate criterion shall respect the MSE of the fused estimator. To this178

end, we introduce the following split criterion179

(q̂, ĉ) = arg min
q̂∈[p],ĉ∈R

(
(1− ŵof (Q̂L))σ̂

2
u(Q̂L,Rt) + (1− ŵof (Q̂R))σ̂

2
u(Q̂R,Rt)

)
, (9)

where (1 − ŵof (Q̂L))σ̂
2
u(Q̂L,Rt) and (1 − ŵof (Q̂R))σ̂

2
u(Q̂R,Rt) estimate the MSE of τ̂of (Q̂L)180

and τ̂of (Q̂R), respectively, according to formula (2). Compared to (7), the proposed criterion incor-181

porates the additional information from the observational data into each node split in an adaptive182

manner by simply re-scaling the estimated MSE of the unbiased estimator.183

Comment The criterion (9) offers the benefit of local adjustment, which can be intuitively justified.184

In sub-regions where the observational data exhibit moderate confounding biases, this criterion im-185

proves tree building by providing a sharper assessment of the variability of the fused estimator. On186

the other hand, for sub-regions where the observational data exhibit substantial confounding biases,187

the estimated weights of those sub-regions approach zero according to (5). In such cases, the cri-188

terion reduces to the conventional criterion (7), except for the standardization of the square of the189

sample size. It is worth mentioning that all the local adjustments achieved by applying this adaptive190

fusion strategy are data-driven, namely one can just avoid global modeling of the confounding bias191

function, which requires domain-specific knowledge of the observational studies. Additionally, it192

also enables the exclusion of the global impact of extremely large confounding biases of the obser-193

vational data that only exist in certain sub-regions of the feature space.194

We denote the partition obtained under criterion (9) as Q̂of = {Q̂of,1, Q̂of,2, · · · , Q̂of,|Q̂of |}, and195

the corresponding tree-based estimator of the HTE is defined as196

τ̂fast(x) =

|Q̂of |∑
j=1

τ̂eof (Q̂of,j)I{x ∈ Q̂of,j}, (10)

where the superscript “e” is to show that the RCT data used to construct the fused estimator at the leaf197

node is indexed by Re and “fast” is an acronym for the name Fused and Accurate Shrinkage Tree,198

which is due to the data fusion nature of the criterion (9), the shrinkage-type leaf node estimator (6)199

and its accuracy in terms of the MSE.200
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3.3 Ensemble fusion201

To reduce overfitting, improve robustness against outliers, and enhance generalization, we introduce202

the bagged version (Hastie et al., 2009) of the FAST, referred to as the rfFAST, as follows: We203

randomly draw index sets R∗ of size n and O∗ of size m, separately from R and O with replacement.204

We repeat the process B times, resulting in {R∗,(b),O∗,(b)}Bb=1. Then, B estimators τ̂∗,(b)fast (x) can be205

calculated based on the trial data indexed by R∗,(b) and the observational data index by O∗,(b). We206

then define τ̂rffast(x) = (1/B)
∑B

b=1 τ̂
∗,(b)
fast (x). A detailed algorithm is given in the supplementary207

material and for the construction of the prediction intervals, see Zhang et al. (2020).208

4 Theoretical guarantee209

In this section, we formally establish the benefits of the proposed split criterion (9) compared with210

the conventional criterion (7). To present the theoretical result, we first pose the following regularity211

conditions that are standard in literature (see e.g., Györfi et al., 2002 and Scornet et al., 2015).212

Assumption 2. (i) There exists a positive constant λ < ∞ such that E{exp(λỸ 2)|S = i} < ∞ for213

i = 0, 1. (ii) There exists positive constants σmin < ∞ such that σ2
min < Var(Ỹ |X = x, S = 0)214

for any x ∈ X .215

Theorem 1 (MSE reduction of the proposed split criterion). Let θ = (q, c) and Θ = [p] × R.216

Suppose the node that needs to be partitioned is Qj , under which the sample sizes of the trial data217

and observational data are nj and mj , respectively. Let M(θ) and Mof (θ) be the sum of MSEs of218

the conventional HTE estimator and the fused HTE estimator on the two child nodes of Qj split by θ,219

respectively. Denote bmin = infx∈Qj
{E(Ỹ |X = x, S = 0) − E(Ỹ |X = x, S = 1)}. Let θ̂ be the220

solution of the conventional split criterion (7) and θ̂of be the solution of the proposed split criterion221

(9). Under Assumptions 1-2, we have222

(i) For any θ ∈ Θ,223

Mof (θ)

M(θ)
− 1 ≤ − σ2

min

σ2
min + njb2min

. (11)

(ii) With probability at least 1− C1e
−t for some positive constant C1 < ∞, it holds that224

M(θ̂)−M(θ∗) ≤ C2
t+ log(pnj) log

4(nj)

nj
, (12)

and Mof (θ̂of )−Mof (θ
∗
of ) ≤ C3

(
t+ log(pnj) log

4(nj)

mj
+

t+ log(pnj) log
4(nj)

nj

)
, (13)

for some positive constant C2, C3 < ∞, where θ∗ and θ∗of are oracle splits definded as225

θ∗ = argmin
θ∈Θ

M(θ) and θ∗of = argmin
θ∈Θ

Mof (θ).

In the above theorem, the (i) part establishes a uniform MSE reduction result for any split choice226

θ ∈ Θ of the proposed split criterion (9). As revealed in (11), the criterion (9) leads to larger227

MSE reduction on the nodes with a larger variance of Ỹ and less bias of the observational data. In228

addition, the upper bound in (11) decreases as the node sample size nj decreases, implying that229

our proposed criterion leads to increasing relative benefits as the tree grows deeper. Besides, in230

the (ii) part we present non-asymptotic bounds for the discrepancies between the MSEs under the231

empirically estimated splits and the oracle splits, showing that the MSEs under the estimated splits232

can achieve a fast convergence rate. As a direct consequence of Theorem 1, the consistency of our233

final HTE estimator (10) can be established, since it is known from Scornet et al. (2015) and Athey234

et al. (2019) that the conventional tree-based estimator using only the trial data is mean-squared235

consistent, and our proposed method leads to a reduced MSE.236

Proposition 1 (Consistency of τ̂fast). For almost every x ∈ [−1, 1]p, we have τ̂fast(x) → τ(x) in237

probability as n,m → ∞.238
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5 Experiments239

In this section, we will demonstrate the results of a series of experiments to answer the following two240

questions: (i) Whether the proposed method can effectively alleviate the impact of confounding bias241

of observational data and limited sample size of trial data; (ii) Whether the techniques we proposed242

including local fusion in tree leaves and adaptive fusion in partitioning are valid, respectively.243

In consequence, we conducted experiments on both simulated and real-world datasets to verify the244

effectiveness of our method. We evaluated our method against both traditional tree-based and data245

fusion-based casual methods. The former includes the classical Transformed Outcome Honest Tree246

(HT) Athey and Imbens (2016) and its ensemble version Generalized Random Forest (GRF) Athey247

et al. (2019). The latter includes the simplest fusion estimator (SF) training both trial data and248

observational data together without distinction and the KPS estimators Kallus et al. (2018). In order249

to facilitate better comparison and understanding of our proposed method, we demonstrate three250

versions: the simple implementation, Shrinkage Tree (ST), described in Section 3.1; the improved251

version, Fused and Accurate Shrinkage Tree (FAST), described in Section 3.2; and its final ensemble252

version rfFAST described in Section 3.3. The results of each simulation experiment were based on253

B = 100 replications. The ensemble size for all the ensemble estimators was set to 100. For the254

tree estimators, the minimum number of observations required to be at a leaf node was set to 5 and255

the maximum depth of the tree was set to 10.256

5.1 Simulation257

We conducted two sets of simulation experiments to evaluate the finite sample performance of the258

fused estimator and various baseline estimators. In both experiments, we first generated the pre-259

treatment covariates X = (X1, X2, · · · , Xp)
T from Uniform[−1, 1]p and the unobserved variable260

U from N(0, 1). Then, we generated the potential outcomes by Y (d) = dτ(X)+
∑p

j=1 Xj+1.5U+261

ϵ(d), where τ(X) = 1+X1+X2
1 +X2+X2

2 and ϵ(d) ∼ N(0, 1) for d = 0, 1. Thus The treatment262

assignments for the trial sample of size n and the observational sample of size m were generated as263

follows: D|(X, U, S = 1) ∼ Ber(0.5) and D|(X, U, S = 0) ∼ Ber(1/(1+ exp(−βU − 0.5X1))).264

Thus, the magnitude of β controls the strength of the unmeasured confounding: a larger β leads to a265

larger confounding bias. The test data Xtest,j for 1 ≤ j ≤ p were generated from Uniform(−1, 1)266

with sample size 1000.267

In the first experiment, we aim to verify the effectiveness of the proposed data fusion strategy via268

an ablation study. We compared the robustness of the ST and the FAST against different levels269

of confounding bias parameter β. Two baselines were considered: (i) the HT using only the trial270

data and (ii) the SF estimator obtained by directly merging all the available data and constructing a271

Fit-Based Causal Tree (Athey and Imbens, 2016). We set the sample sizes of the trial data and the272

observational data be n = 200 and m = 2000, respectively, the dimension of covariates p = 5 and273

β ∈ {0.1c|c ∈ N, c ≤ 19}. The following three conclusions can be drawn from Figure 2: (1) When274

confounding bias in observational data was small, the simple fusion (SF) strategy can effectively im-275

prove the model performance. But when it became large, the SF was very vulnerable to confounding276

bias in observational data; (2) Even with the increase of β, both ST and FAST consistently showed277

resistance to confounding bias; (3) FAST was significantly better than other methods including ST,278

which verified the effectiveness of our proposed split criterion (9) numerically.279

In the second experiment, we evaluated the RMSEs with respect to different n and β. We set280

m = 2000 and p = 5. We included seven estimators in the analysis: The first two estimators281

were calculated purely based on the trial data: (i) the Transformed Outcome Honest Tree (HT)282

(Athey and Imbens, 2016) and (ii) the Generalized Random Forest (GRF) (Athey et al., 2019).283

The rest estimators were calculated using different data fusion strategies: (iii) the Shrinkage Tree284

(ST) estimator,(iv) the Fused and Accurate Shrinkage Tree (FAST) estimator, (v& vi) the KPS285

estimators (Kallus et al., 2018) with a parametric (OLS) estimator and a non-parametric (Random286

Forest) specification of the confounding function, respectively and (vii) the bagged FAST estimator287

(rfFAST).288

Table 1 reports the RMSEs of the seven estimators, conveying a good estimation accuracy of both289

the FAST and its ensemble version rfFAST. Among the three individual estimators, the ST and290

FAST, exhibited superior performance compared to the HT, and the FAST outperformed the ST.291

These relative performances provided support for the FAST approach compared to the classical292
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Figure 2: The averaged root mean square error (RMSE) (mean with 2×s.d. error bars) of each
algorithm on multiple simulation datasets with different levels of the confounding bias parameter β.

Table 1: The averaged RMSE (standard error in parentheses) of the estimators with respect to the
trial sample size n and the confounding bias parameter β. The best performance is marked in bold.

n β HT ST FAST GRF KPSols KPSRF rfFAST

100

0.5 1.89 1.84 1.33 1.73 0.84
(0.06) (0.06) (0.04) (0.03) (0.02)

1.0 2.28 1.90 1.85 1.12 1.29 1.65 0.89
(0.06) (0.05) (0.05) (0.02) (0.04) (0.03) (0.02)

2.0 2.05 2.02 1.28 1.71 0.98
(0.05) (0.04) (0.04) (0.03) (0.02)

200

0.5 1.87 1.71 0.96 1.56 0.73
(0.04) (0.04) (0.02) (0.02) (0.01)

1.0 2.20 1.98 1.83 1.19 0.97 1.59 0.84
(0.04) (0.04) (0.04) (0.01) (0.03) (0.02) (0.02)

2.0 2.08 1.97 1.01 1.57 0.92
(0.03) (0.03) (0.02) (0.03) (0.02)

honest regression tree, the proposed split criterion (9), and the shrinkage estimation strategy (6),293

which are implemented progressively. Among the three ensemble estimators, the rfFAST estimator294

demonstrated the best performance among all the six combinations of the trial sample size n and the295

confounding bias parameter β. On the other hand, the performance of the KPS estimators appeared296

to be less stable. The KPSols outperformed the GRF only when the trial sample size was relatively297

large (n = 200). Under the non-parametric specification of the confounding function, the KPSRF298

did not gain benefit from incorporating the observational data and was consistently inferior to the299

baseline estimator GRF.300

5.2 Real-world data301

In this sub-section, we report an analysis of the Tennessee Student/Teacher Achievement Ratio302

(STAR) Experiment (Krueger, 1999) to demonstrate the proposed FAST for the HTE estimation.303

We aim at quantifying the treatment effect of the class size on the student’s academic achievement.304

Data description The STAR Experiment was a randomized controlled trial conducted in the late305

1980s. Students were randomly assigned to one of the two types of classes during the first school306

year: D = 1 for small classes containing 13 − 17 pupils and D = 0 for regular classes containing307

22− 25 pupils. The outcome Y is the average of the listening, reading, and math standardized tests308

at the end of first grade. The vector of covariates X includes gender, race, birth month, birthday,309

birth year, free lunch given or not, and teacher id. This made a universal sample of 4218 students,310
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among which 2413 were randomly assigned to regular-size classes (D = 0) and 1805 to small311

classes (D = 1).312

Ground-truth In practice, the ground-truth τ(·) is not accessible, so we replaced it with an estimate313

calculated by a generalized random forest (Athey et al., 2019) based on all the 4218 observations.314

Construction of the trial, observational and test data Following Kallus et al. (2018), we intro-315

duced confounding bias by splitting the population over a variable which is known to strongly affect316

the observed outcome Y (Krueger, 1999): rural or inner-city (U = 1, 2811 students) and urban or317

suburban (U = 0, 1407 students). The trial data were generated by randomly sampling a fraction h318

of the students with U = 1, where h ranges from 0.1 to 0.5. The observational data were constructed319

as follows: From students with U = 1, we took the controls (D = 0) that were not sampled in trial320

data, and the treated (D = 1) whose outcomes were in the lower half of outcomes among students321

with D = 1 and U = 1; From students with U = 0, we took all of the controls (D = 0), and the322

treated (D = 1) whose outcomes were in the lower half of outcomes among students with D = 1323

and U = 0. The test data consisted of a held-out sub-sample of all the observations in the universal324

sample excluding the trial data. For detailed pre-processing of the data, see the supplementary file.325

Results We compared the performance of the rfFAST with various baseline estimators. In partic-326

ular, the NF and the SF estimators were constructed using the Random Forest regressor. The NF327

estimator utilized only trial data, while the SF estimator utilized both trial data and observational328

data together without distinction. As shown in Figure 3, the proposed rfFAST method consistently329

outperformed other estimators.

Figure 3: The RMSEs of the five estimators with respect to different sample sizes of the trial data,
reflected by the fraction parameter h. A large h means a large trial sample size.

330

6 Discussion331

This paper explores the estimation of heterogeneous treatment effects (HTE) within the framework332

of causal data fusion. Drawing inspiration from the classical James-Stein shrinkage estimation333

(Green and Strawderman, 1991) approach, the authors introduce a new method called Fused and334

Accurate Shrinkage Tree (FAST) that effectively incorporates observational data in both feature335

space segmentation and leaf node value estimation. This new approach is shown to outperform336

existing data fusion methods via numerical experiments.337

The above estimation framework can be generalized to any data fusion problem if there exists an338

unbiased estimator and a biased estimator of some functions of interest. It would be worthwhile to339

explore the combination of the FAST method with other ensemble methods, such as the boosting340

and the grf-style (Athey et al., 2019) bagging, in addition to Breiman-style (Breiman, 2001) bagging341

used in rfFAST. Moreover, extending the framework to handle time-series observational data would342

be an interesting direction for future research. Additionally, investigating statistical inference under343

the proposed fusion framework would be valuable.344
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